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Abstract: We consider u(x, t), a solution of ∂tu = ∆u + |u|p−1u which blows up at some time T > 0, where
u : ℝN × [0, T) → ℝ, p > 1 and (N − 2)p < N + 2. Define S ⊂ ℝN to be the blow-up set of u, that is, the set
of all blow-up points. Under suitable non-degeneracy conditions, we show that if S contains an (N − ℓ)-
dimensional continuum for some ℓ ∈ {1, . . . , N − 1}, then S is in fact a C2 manifold. The crucial step is to
make a refined study of the asymptotic behavior of u near blow-up. In order to make such a refined study, we
have to abandon the explicit profile function as a first-order approximation and take a non-explicit function
as a first-order description of the singular behavior. This way we escape logarithmic scales of the variable
(T − t) and reach significant small terms in the polynomial order (T − t)μ for some μ > 0. Knowing the refined
asymptotic behavior yields geometric constraints of the blow-up set, leading to more regularity on S.
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1 Introduction

We are interested in the following semilinear heat equation:

{
∂tu = ∆u + |u|p−1u,
u(0) = u0 ∈ L∞(ℝN),

(1.1)

where u(t) : x ∈ ℝN → u(x, t) ∈ ℝ, ∆ denotes the Laplacian inℝN , and p > 1 or 1 < p < N+2
N−2 if N ≥ 3. It is well

known that for each initial data u0 the Cauchy problem (1.1) has a unique solution u ∈ C([0, T), L∞(ℝN)) for
some 0 < T ≤ +∞, and that either T = +∞ or

T < +∞ and lim
t→T

‖u(t)‖L∞ = +∞.

In the latter case we say that the solution blows up in finite time, and T is called the blow-up time. In such a
blow-up case, a point â ∈ ℝN is called a blow-up point if u(x, t) is not locally bounded in some neighborhood
of (â, T), this means that there exists (xn , tn) → (â, T) such that |u(xn , tn)| → +∞when n → +∞. We denote
by S the blow-up set, that is, the set of all blow-up points of u.
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Given â ∈ S, we know from Velázquez [15] (see also Filippas and Kohn [5], Filippas and Liu [6], Herrero
and Velázquez [9], Merle and Zaag [12]) that up to replacing u by −u, one of following two cases occurs:

Case 1 (non-degenerate rate of blow-up). For all K0 > 0, there is an orthonormal (N × N)-matrix Qâ and
ℓâ ∈ {1, . . . , N} such that

sup
|ξ|≤K0

!!!!!!!
(T − t)

1
p−1 u(â + Qâξ√(T − t)|log(T − t)|, t) − fℓâ (ξ)

!!!!!!!
→ 0 as t → T, (1.2)

where

fℓâ (ξ) = (p − 1 +
(p − 1)2
4p

ℓâ
∑
i=1
ξ2i )

− 1
p−1
. (1.3)

Case 2 (degenerate rate of blow-up). For all K0 ≥ 0, there exists an even integer m ≥ 4 such that

sup
|ξ|≤K0

!!!!!!!
(T − t)

1
p−1 u(â + ξ(T − t)

1
m , t) − (p − 1 + ∑

|α|=m
cαξ α)

− 1
p−1 !!!!!!! → 0 as t → T, (1.4)

where ξ α = ∏N
i=1 ξ

αi
i , |α| = ∑N

i=1 αi if α = (α1, . . . , αn) ∈ ℕN and∑|α|=m cαξ α ≥ 0 for all ξ ∈ ℝN .
According to Velázquez [15], if case 1 occurs with ℓâ = N or case 2 occurs with ∑|α|=m cαξ α > 0 for all

ξ ̸= 0, then â is an isolated blow-up point. Herrero and Velázquez [7, 8] prove that the profile (1.3) with
ℓâ = N is generic in the case N = 1, and they announced the same for N ≥ 2, but they never published it.
Bricmont and Kupiainen [1] and Merle and Zaag [10] show the existence of initial data for (1.1) such that the
corresponding solutions blowup infinite time T at only oneblow-uppoint â andverify the behavior (1.2)with
ℓâ = N. The method of [10] also gives the stability of the profile (1.3) (ℓâ = N) with respect to perturbations
in the initial data (see also Fermanian Kammerer, Merle and Zaag [3, 4] for other proofs of the stability).
Ebde and Zaag [2] and Nguyen and Zaag [13] prove the stability of the profile (1.3) (ℓâ = N) with respect to
perturbations in the initial data and also in the nonlinearity, in some class allowing lower order terms in the
solution and also in the gradient. All the other asymptotic behaviors are suspected to be unstable.

When
ℓâ ≤ N − 1

in (1.2), we do not know whether â is isolated or not, or whether S is continuous near â. In this paper, we
assume that â is a non-isolated blow-up point and that S is continuous locally near â, in a sense that we
will describe precisely later. Our main concern is the regularity of S near â. The first relevant result is due to
Velázquez [16] who shows that the Hausdorffmeasure of S is less than or equal to N − 1. No further results on
the description of S were known until the contributions of Zaag [17, 18, 20] (see also [19] for a summarized
note). In [18], he proves that if S is locally continuous, then S is a C1 manifold. He also obtains the first
description of the singularity near â. More precisely, he shows in [18, Theorems 3 and 4] that for some t0 < T
and δ > 0, for all K0 > 0, t ∈ [t0, T) and x ∈ B(â, 2δ) such that d(x, S) ≤ K0√(T − t)|log(T − t)|, one has

!!!!!!!
(T − t)

1
p−1 u(x, t) − f1( d(x, S)

√(T − t)|log(T − t)|
)
!!!!!!!
≤ C(K0)

log|log(T − t)|
|log(T − t)|

, (1.5)

where f1 is defined in (1.3) (ℓâ = 1). Moreover, for all x ∈ ℝN \ S, one has u(x, t) → u∗(x) as t → T with

u∗(x) ∼ U(d(x, S)) = (
8p

(p − 1)2
|log d(x, S)|
d2(x, S)

)
1
p−1

as d(x, S) → 0 and x ∈ B(â, 2δ). (1.6)

If
ℓâ = 1,

Zaag [17] further refines the asymptotic behavior (1.5) and gets error terms of order (T − t)μ for some μ > 0.
This way, he obtains more regularity on the blow-up set S. The key idea is to replace the explicit profile f1
in (1.5) by a non-explicit function, say ũ(x1, t), then go beyond all logarithmic scales through scaling and
matching. In fact, for ũ(x1, t), Zaag takes a symmetric, one-dimensional solution of (1.1) that blows up at the
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same time T only at the origin, and behaves like (1.2) with ℓâ = 1. More precisely, he abandons the explicit
profile function f1 in (1.5) and chooses a non-explicit function ũσ(d(x, S), t) as a first-order description of the
singular behavior, where ũσ is defined by

ũσ(x1, t) = e−
σ
p−1 ũ(e− σ

2 x1, T − e−σ(T − t)). (1.7)

He shows that for each blow-up point a near â, there is an optimal scaling parameter σ = σ(a) so that the
difference (T − t)

1
p−1 (u(x, t) − ũσ(a)(d(x, S), t)) along the normal direction to S at a is minimized. Hence, if

the function ũσ(a)(d(x, S), t) is chosen as a first-order description for u(x, t) near (a, T), we avoid logarithmic
scales. More precisely, for all t ∈ [t0, T) and x ∈ B(â, 2δ) such that d(x, S) ≤ K0√(T − t)|log(T − t)|, one has

(T − t)
1
p−1 !!!!u(x, t) − ũσ(a)(d(x, S), t)!!!! ≤ C(T − t)μ , (1.8)

for some μ > 0. Note that any other value of σ ̸= σ(a) in (1.8) gives an error of logarithmic order of the variable
(T − t) (the same as in (1.5)). Exploiting estimate (1.8) yields geometric constraints on S which imply the
C1,

1
2−η-regularity of S for all η > 0. A further refinement of (1.8) given in [20] yields better estimates in the

expansionof u(x, t)near (a, T).Moreover, some terms following in the expansionof u(x, t)near (a, T) contain
geometrical information about S, resulting in more regularity of S, namely the C2-regularity.

In this work, we want to know whether the C2-regularity near â proven in [20] for ℓâ = 1 would hold in
the case where u behaves like (1.2) near (â, T) with

ℓâ ∈ {2, . . . , N − 1}. (1.9)

Since Zaag obtains the result in [18, 20] only when ℓâ = 1, this corresponds to an (N − 1)-dimensional blow-
up set (the codimension of the blow-up set is one, according to [18]). In our opinion, in those papers the
major obstacle towards the case (1.9) lays in the fact that Zaag could not refine the asymptotic behavior (1.2)
with ℓâ ∈ {2, . . . , N − 1} to go beyond all logarithmic scales and get a smaller error term in polynomial orders
of the variable (T − t). It happens that a similar difficulty was already encountered by Fermanian Kammerer
and Zaag in [4], when they wanted to find a sharp profile in the case (1.2) with ℓâ = N, which corresponds
to an isolated blow-up point, as we have pointed out right after estimate (1.4). Such a sharp profile could
be obtained in [4] only when N = 1 (which corresponds also to ℓâ = 1): unsurprisingly it was ũσ(x1, t), the
dilated version of ũ(x1, t), the one-dimensional blow-up solution mentioned between estimates (1.6) and
(1.7). As a matter of fact, the use of ũ(x1, t) was first used in [4] for the isolated blow-up point in one space
dimension (N = 1 and ℓâ = 1), then later in higher dimensions with an (N − 1)-dimensional blow-up surface
(N ≥ 2 and still ℓâ = 1) in [17].

The interest of ũ(x1, t) is that it provides a one-parameter family of blow-up solutions, thanks to the
scaling parameter in (1.7), which enables us to get the sharp profile by suitably choosing the parameter.

Handling the case ℓâ ≥ 2 remained open, both for the case of an isolated point (ℓâ = N ≥ 2) and a non-
isolated blow-up point (ℓâ = 2, . . . , N − 1). From the refinement of the expansion around the explicit profile
in fℓâ in (1.2), it appeared that one needs a ℓâ(ℓâ + 1)/2-parameter family of blow-up solutions obeying (1.2).

Such a family was constructed by Nguyen and Zaag in [14], and successfully used to derive a sharp
profile in the case of an isolated blow-up point (ℓâ = N ≥ 2), by fine-tuning the ℓâ(ℓâ + 1)/2 = N(N + 1)/2
parameters.

In this paper, we aim at using that family to handle the case of a non-isolated blow-up point (N ≥ 2 and
ℓâ = 2, . . . , N − 1), in order to generalize the results of Zaag in [17, 18, 20], proving in particular the C2-
regularity of the blow-up set, under the hypothesis that it is merely continuous.

The main result in this paper is the following.

Theorem 1.1 (C2-Regularity of the Blow-Up Set Assuming C1-Regularity). Take N ≥ 2 and ℓ ∈ {1, . . . , N − 1}.
Consider u, a solution of (1.1) that blows up in finite time T on a set S. Take â ∈ S where u behaves locally as
stated in (1.2) with ℓâ = ℓ. If S is locally a C1 manifold of dimension N − ℓ, then it is locally C2.

Remark 1.2. Theorem 1.1 was already proved by Zaag [20] only when ℓ = 1. Thus, the novelty of our contri-
bution lays in the case ℓ ∈ {2, . . . , N − 1} and N ≥ 3.
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Under the hypotheses of Theorem 1.1, Zaag [18] already proved that S is a C1 manifold near â, assuming
that S is continuous. Therefore, Theorem 1.1 can be restated under a weaker assumption. Before stating this
stronger version, let us first clearly describe our hypotheses and introduce some terminology borrowed from
[18] (see also [17, 20]). According to Velázquez [15, Theorem 2], we know that for all ϵ > 0, there is δ(ϵ) > 0
such that

S ∩ B(â, 2δ) ⊂ Ωâ,ϵ ≡ {x ∈ ℝN | |Pâ(x − â)| ≥ (1 − ϵ)|x − â|},

where Pâ is the orthogonal projection over πâ, where

πâ = â + span{QTâeℓâ+1, . . . , Q
T
âeN}

is the so-called “weak” tangent plane to S at â. Roughly speaking, Ωâ,ϵ is a cone with vertex â and shrinks
to πâ as ϵ → 0. In some “weak” sense, S is (N − ℓâ)-dimensional. In fact, here comes our second hypothesis:
we assume there is Γ ∈ C((−1, 1)N−ℓâ ,ℝN) such that Γ(0) = â and Im Γ ⊂ S, where Im Γ is at least (N − ℓâ)-
dimensional, in the sense that

for all b ∈ Im Γ, there are (N − ℓâ) independent vectors v1, . . . , vN−ℓâ inℝN and
functions Γ1, . . . , ΓN−ℓâ in C1([0, 1], S) such that Γi(0) = b and Γ�i (0) = vi.

(1.10)

Hypothesis (1.10) means that b is actually non-isolated in (N − ℓâ) independent directions. We assume in
addition that â is not an endpoint in Im Γ in the sense that

for all ϵ > 0, the projection of Γ((−ϵ, ϵ)N−ℓâ ) on the “weak” tangent plane πâ
at â contains an open ball centered at â.

(1.11)

This is the stronger version of our result:

Theorem 1.1�. Take N ≥ 2 and ℓ ∈ {1, . . . , N − 1}. Consider u, a solution of (1.1) that blows up in finite time
T on a set S. Take â ∈ S where u behaves locally as stated in (1.2) with ℓâ = ℓ. Consider Γ ∈ C((−1, 1)N−ℓ,ℝN)
such that â = Γ(0) ∈ Im Γ ⊂ S and Im Γ is at least (N − ℓ)-dimensional (in the sense of (1.10)). If â is not an
endpoint (in the sense of (1.11)), then there are δ > 0, δ1 > 0 and γ ∈ C2((−δ1, δ1)N−ℓ,ℝℓ) such that

Sδ = S ∩ B(â, 2δ) = graph(γ) ∩ B(â, 2δ) = Im Γ ∩ B(â, 2δ),

and the blow-up set S is a C2-hypersurface locally near â.

Let us nowbriefly give themain ideas of the proof of Theorem1.1. The proof is based on techniques developed
by Zaag in [17, 20] for the casewhen the solution of equation (1.1) behaves like (1.2)with ℓ = 1. As in [17, 20],
the proof relies on two arguments:
∙ The derivation of a sharp blow-up profile of u(x, t) near the singularity, in the sense that the difference

between the solution u(x, t) and this sharp profile goes beyond all logarithmic scales of the variables
(T − t). This is possible thanks to the recent result in [14].

∙ Thederivationof a refinedasymptotic profile of u(x, t)near the singularity linked to geometric constraints
on the blow-up set. In fact, we derive an asymptotic profile for u(x, t) in every ball B(a, K0√T − t) for
some K0 > 0 and a blow-up point a close to â. Moreover, this profile is continuous in a and the speed
of convergence of u to the profile in the ball B(a, K0√T − t) is uniform with respect to a. If a and b are
in S and 0 < |a − b| ≤ K0√T − t, then the balls B(a, K0√T − t) and B(b, K0√T − t) intersect each other,
leading to different profiles for u(x, t) in the intersection. However, these profiles have to coincide, up
to the error terms. This creates a geometric constraint which gives more regularity for the blow-up set
near â.
Let us explain the difficulty raised in [17, 20] for the case ℓ ≥ 2. Consider a ∈ S ∩ B(â, 2δ) for some δ > 0

and introduce the following self-similar variables:

Wa(y, s) = (T − t)
1
p−1 u(x, t), y = x − a

√T − t
, s = − log(T − t). (1.12)

Then, we see from (1.1) that for all (y, s) ∈ ℝN × [− log T, +∞),
∂Wa
∂s

= ∆Wa −
1
2 y ⋅ ∇Wa −

Wa
p − 1 + |Wa|p−1Wa . (1.13)
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Under the hypotheses stated in Theorem 1.1, Zaag proved in [18, Proposition 3.1 and pp. 530–533, Section
6.1] that for all a ∈ Sδ ≡ S ∩ B(â, 2δ) for some δ > 0 and s ≥ − log T, there exists an (N × N) orthogonalmatrix
Qa such that

"""""""
Wa(Qay, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""L2ρ

≤ C log s
s2

, (1.14)

where κ = (p − 1)−
1
p−1 , ȳ = (y1, . . . , yℓa ), Qa is continuous in terms of a such that {QTaej | j = ℓ + 1, . . . , N}

spans the tangent plane πa to S at a and QTaei, i = 1, . . . , ℓ are the normal directions to S at a, L2ρ is the
weighted L2 space associated with the weight ρ = 1

(4π)N/2 e−|y|2/4. Note that estimate (1.14) implies (1.5) (see
[18, Appendix C]).

When ℓ = 1, in order to refine estimate (1.14), Zaag in [17] subtracts fromWa a one-dimensional solution
with the same profile. Let us do the same when ℓ = 2, . . . , N − 1, and explain how Zaag succeeds in handing
the case ℓ = 1 and gets stuck when ℓ ≥ 2. To this end, we consider û(x̄, t) with x̄ = (x1, . . . , xℓ) a radially
symmetric solution of (1.1) inℝℓ which blows up at time T only at the origin with the profile (1.2) with ℓâ = ℓ
(see [14, Appendix A.1] for the existence of such a solution). If the ℓ-dimensional solution û is considered
inℝN , then it blows up on the (N − ℓ)-dimensional vector space {x̄ = 0} inℝN . In particular, if we introduce

ŵ(ȳ, s) = (T − t)
1
p−1 û(x̄, t), ȳ = x̄

√T − t
, s = − log(T − t), (1.15)

then ŵ is a radially symmetric solution of (1.13) which satisfies

"""""""
ŵ(ȳ, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""L2ρ

≤ C log s
s2

. (1.16)

Noting that û and ŵmay be considered as solutions defined for all y ∈ ℝN (and independent of yℓ+1, . . . , yN),
and given that ŵ(ȳ, s) and Wa(Qay, s) have the same behavior up to the first order (see (1.14) and (1.16)),
we may try to use ŵ as a sharper (though non-explicit) profile for Wa(Qay, s). In fact, we have the following
classification (see Corollary 2.2 below):

Case 1. There is a symmetric, real (ℓa × ℓa)-matrixB = B(a) ̸= 0 such that

Wa(Qay, s) − ŵ(ȳ, s) =
1
s2

(
1
2 ȳ

TBȳ − tr(B)) + o( 1
s2

) as s → +∞ in L2ρ . (1.17)

Case 2. There is a positive constant C0 such that

‖Wa(Qay, s) − ŵ(ȳ, s)‖L2ρ = O(e−
s
2 sC0) as s → +∞. (1.18)

If ℓ = 1 (B(a) ∈ ℝ), Zaag in [17] noted the following property:

ŵ(y1, s + σ0) − ŵ(y1, s) =
2κσ0
ps2

(
1
2 y

2
1 − 1) + o( 1

s2
) in L2ρ . (1.19)

Therefore, choosing σ0(a) such that 2κσ0
p = B(a), we see from (1.17) and (1.19) that

Wa(Qay, s) − ŵ(y1, s + σ0(a)) = o(
1
s2

) as s → +∞ in L2ρ .

From the classification given in (1.17) and (1.18), only (1.18) holds and

‖Wa(Qay, s) − ŵ(y1, s + σ0(a))‖L2ρ = O(e−
s
2 sC0) as s → +∞. (1.20)

If we return to the original variables u(x, t) and û(x1, t) through (1.12) and (1.15), then (1.8) follows from the
transformation (1.7) together with estimate (1.20) (see [17, Appendix C]). In other words, ŵ(y1, s + σ0(a))
serves as a sharp (though non-explicit) profile for Wa(Qay, s) in the sense of (1.20). Using estimate (1.20)
together with some geometrical arguments, we are able to prove the C1, 12−η-regularity of the blow-up set, for
any η > 0. Then, a further refinement of (1.20) up to order of e− s

2 /s together with a geometrical constraint on
the blow-up set S results in more regularity for S, which yields the C2-regularity.
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If ℓ ≥ 2, the matrix B(a) in (1.17) has ℓ(ℓ+1)
2 real parameters. Therefore, applying the trick of [17] (see

(1.19) above) only allows us to control one parameter; there remain ℓ(ℓ+1)
2 − 1 real parameters to be handled.

This is themajor reasonwhich prevents Zaag in [17, 20] from deriving a similar estimate to (1.20), hence, the
refined regularity of the blow-up set. Fortunately, we can overcome this obstacle thanks to a recent result by
Nguyen and Zaag (see Proposition 2.4 below) who show in [14] that for any symmetric, real (ℓ × ℓ)-matrixA,
there is a solution wA of equation (1.13) inℝℓ such that

wA(ȳ, s) − ŵ(ȳ, s) = 1
s2

(
1
2 ȳ

TAȳ − tr(A)) + o( 1
s2

) as s → +∞ in L2ρ . (1.21)

Hence, choosingA = B(a), we see from (1.21), (1.17) and (1.18) that

‖Wa(Qay, s) − wB(a)(ȳ, s)‖L2ρ ≤ Ce
− s
2 sC0 (1.22)

for s large enough. Exploiting estimate (1.22) and adapting the arguments given in [17, 20], we are able to
prove the C2-regularity of the blow-up set.

The next result shows how the C2-regularity is linked to the refined asymptotic behavior of Wa. More
precisely, we link in the following theorem the refinement of the asymptotic behavior of Wa to the second
fundamental form of the blow-up set at a.

Theorem 1.3 (Refined Asymptotic Behaviors Linked to the Geometrical Description of the Blow-Up Set).
Under the hypotheses of Theorem 1.1, there exist ̃s0 ≥ − log T and δ > 0 such that for all a ∈ Sδ = S ∩ B(â, 2δ),
there exists a symmetric (ℓ × ℓ)matrixB(a) such that for all s ≥ ̃s0,

"""""""
Wa(Qay, s) − wB(a)(ȳ, s) −

κe− s
2

2ps

ℓ

∑
i=1
yi

N
∑

k,j=ℓ+1

Λ(i)
k,j(a)

1 + δk,j
(ykyj − 2δk,j)

"""""""L2ρ
≤ C e

− s
2

s 3
2−ν

, (1.23)

for some ν ∈ (0, 12 ), where a → {Λ(i)
k,j(a)}ℓ+1≤j,k≤N is a continuous symmetric matrix representing the second fun-

damental form of the blow-up set at the blow-up point a along the unitary normal vector QTaei. Moreover,

Λ(i)
k,j(a) =

p
4κ lim

s→+∞
se

s
2 ∫

ℝN

Wa(Qay, s)yi(ykyj − 2δk,j)ρ(y)dy. (1.24)

In Section 2, we give the main steps of the proofs of Theorems 1.1 and 1.3. We leave all long and technical
proofs to Section 3.

2 Setting of the Problem and Strategy of the Proof of the
C2-regularity of the Blow-Up Set

In this section we give the main steps of the proofs of Theorems 1.1 and 1.3. All long and technical proofs
will be left to the next section.We proceed in three parts corresponding to three separate subsections. For the
reader’s convenience, we briefly describe these parts as follows:
∙ Part 1: We derive a sharp blow-up behavior for solutions of equation (1.1) having the profile (1.2) with

ℓâ ∈ {1, . . . , N − 1} such that the difference between the solution and this sharp blow-up behavior goes
beyond all logarithmic scales of the variable T − t. Themain result in this step is stated in Proposition 2.5.

∙ Part 2: Through the introduction of a local chart, we give a geometrical constraint on the expansion of the
solution linked to the asymptotic behavior (see Proposition 2.7). This geometrical constraint is a crucial
point which is the bridge between the asymptotic behavior and the regularity of the blow-up set.

∙ Part 3:Using the sharpblow-upbehavior derived inPart 1,wefirst get theC1, 12−η-regularity of theblow-up
set S (see Proposition2.8), then togetherwith the geometrical constraint,we achieve theC1,1−η-regularity
of S (see Proposition 2.9). With this better regularity and the geometric constraint, we further refine the
asymptotic behavior (see Proposition 2.10) and use again the geometric constraint to get C2-regularity
of S, which yields the conclusion of Theorems 1.1 and 1.3.
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We remark that Parts 1 and 2 are independent, whereas Part 3 is a combination of the first two. Through-
out this paper, we work under the hypotheses of Theorem 1.1. Since S is locally near â a manifold of dimen-
sion N − ℓ, we may assume that there is a C1 function γ such that

Sδ ≡ S ∩ B(â, 2δ) = graph(γ) ∩ B(â, 2δ),

for some δ > 0 and γ ∈ C1((−δ1, δ1)N−ℓ,ℝℓ) with δ1 > 0.
In what follows, ℓ ∈ {1, . . . , N − 1} is fixed, and for all z = (z1, . . . , zN) ∈ ℝN , we denote by z̄ the first ℓ

coordinates of z, namely z̄ = (z1, . . . , zℓ), andby z̃ the last (N − ℓ) coordinates of z, namely z̃ = (zℓ+1, . . . , zN).
We usually use indices i, m for the range 1, . . . , ℓ and indices j, k, n for the range ℓ + 1, . . . , N.

2.1 Part 1: Blow-Up Behavior Beyond All Logarithmic Scales of (T − t)
In this subsection, we use the ideas given by Fermanian Kammerer and Zaag [4] together with a recent result
by Nguyen and Zaag in [14] in order to derive a sharp (though non-explicit) profile for blow-up solutions of
(1.1) in the sense that the first order in the expansion of the solution around this sharp profile goes beyond
all logarithmic scales of (T − t) and reaches polynomial scales of (T − t). In fact, we replace the 1-scaling
parameter σ in (1.8) by a ℓ(ℓ+1)

2 -parameters family, which generates a substitution for ũσ defined in (1.7) and
serves as a sharp profile for solutions having the behavior (1.2) with ℓâ ∈ {1, . . . , N − 1}. The main result in
this part is Proposition 2.5 below.

Consider a ∈ Sδ. IfWa(y, s) and ŵ(ȳ, s) are defined as in (1.12) and (1.15), then we know from [18] that

"""""""
Wa(Qay, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""L2ρ

≤ C log s
s2

(2.1)

and
"""""""
ŵ(ȳ, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""L2ρ

≤ C log s
s2

. (2.2)

The first step is to classify all possible asymptotic behaviors ofWa(Qay, s) − ŵ(ȳ, s) as s goes to infinity.
To do so, we shall use the following result which is inspired by Fermanian Kammerer and Zaag [4].

Proposition 2.1 (Classification of the Difference Between Two Solutions of (1.13) Having the Same Profile).
Assume thatW1 andW2 are two solutions of (1.13) verifying

"""""""
Wi(y, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""L2ρ

≤ C log s
s2

, i = 1, 2, (2.3)

where ȳ = (y1, . . . , yℓ) for some ℓ ∈ {1, . . . , N − 1}. Then, one of the two following cases occurs:
∙ Case 1. There is a symmetric, real (ℓ × ℓ)-matrixB ̸= 0 such that

W1(y, s) −W2(y, s) =
1
s2

(
1
2 ȳ

TBȳ − tr(B)) + o( 1
s2

) as s → +∞ in L2ρ . (2.4)

∙ Case 2. There is C0 > 0 such that

‖W1(y, s) −W2(y, s)‖L2ρ = O(e−
s
2 sC0) as s → +∞.

Proof. The proof follows from the strategy given in [4] for the difference of two solutionswith the radial profile
(ℓ = N). Note that the case when ℓ = 1 was treated in [17]. Since some technical details are straightforward,
we briefly give the main steps of the proof in Section 3.1 and just emphasize the novelties.

An application of Proposition 2.1 with W1(y, s) = Wa(Qay, s) and W2(y, s) = ŵ(ȳ, s) yields the following
corollary directly.
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Corollary 2.2. As s goes to infinity, one of the two following cases occurs:
∙ Case 1. There is a symmetric, real (ℓ × ℓ)-matrixB = B(a) ̸= 0 continuous as a function of a such that

Wa(Qay, s) − ŵ(ȳ, s) =
1
s2

(
1
2 ȳ

TBȳ − tr(B)) + o( 1
s2

) in L2ρ . (2.5)

∙ Case 2. There is C0 > 0 such that

‖Wa(Qay, s) − ŵ(ȳ, s)‖L2ρ = O(e−
s
2 sC0). (2.6)

Remark 2.3. Note that the continuity of B comes from the continuity of Wa with respect to a, where Wa
behaves as in (2.1). In particular, Zaag [18] showed the stability of the blow-up behavior (2.1) with respect
to blow-up points (see [18, Proposition 3.1 and Section 6.1]).

In the next step, we recall a recent result by Nguyen and Zaag [14], which gives the construction of solutions
for equation (1.13) with some prescribed behavior.

Proposition 2.4 (Construction of Solutions for (1.13) with Some Prescribed Behavior). Let ℓ ∈ {1, . . . , N − 1}.
For all A ∈Mℓ(ℝ), where Mℓ(ℝ) is the set of all symmetric, real (ℓ × ℓ)-matrices, there exists a solution
wA(y, s) of (1.13) defined onℝN × [s0(A), +∞) such that

wA(ȳ, s) − ŵ(ȳ, s) = 1
s2

(
1
2 ȳ

TAȳ − tr(A)) + o( 1
s2

) as s → +∞ in L2ρ , (2.7)

where ŵ is the radially symmetric, ℓ-dimensional solution of (1.13) satisfying (2.2).

Proof. See [14, Theorem 3]. Although that result is stated for the case ℓ = N, we can extend it to the case
when ℓ ≤ N − 1 by considering solutions of (1.13) as ℓ-dimensional solutions, those artificially generated by
adding irrelevant space variables (yℓ+1, . . . , yN) to the domain of definition of the solutions.

The following result is a direct consequence of Corollary 2.2 and Proposition 2.4.

Proposition 2.5 (Sharp (Non-Explicit) Profile for Solutions of (1.1) Having the Behavior (1.2) with ℓ ≤ N − 1).
There exist s0 > 0 and a continuous matrixB : Sδ → Mℓ(ℝ), such that for all a ∈ Sδ and s ≥ s0,

""""Wa(Qay, s) − wB(a)(ȳ, s)""""L2ρ ≤ Ce
− s
2 sC0 , (2.8)

wherewB is the solution constructed as in Proposition 2.4, C0 > 0 is given in Proposition 2.1. Moreover, we have
the following:
(i) For all s ≥ s0 + 1,

sup
|y|≤K√s

!!!!Wa(y, s) − wB(a)(ȳa , s)!!!! ≤ C(K)e
− s
2 s

3
2+C0 , (2.9)

where ȳa = (y ⋅ Qae1, . . . , y ⋅ Qaeℓ).
(ii) For all t ∈ [T − e−s0−1, T),

sup
|x−a|≤K√(T−t)|log(T−t)|

!!!!(T − t)
1
p−1 u(x, t) − wB(a)(ȳa,x , − log(T − t))!!!! ≤ C(K)(T − t)

1
2 |log(T − t)|

3
2+C0 , (2.10)

where ȳa,x = 1
√T−t

((x − a) ⋅ Qae1, . . . , (x − a) ⋅ Qaeℓ).

Proof. From (2.5) and (2.7), we have for any symmetric (ℓ × ℓ)-matrixA,

Wa(Qay, s) − wA(ȳ, s) = 1
s2

(
1
2 ȳ

T(B −A)ȳ − tr(B −A)) + o( 1
s2

) in L2ρ .

ChoosingA = B(a), we get
""""Wa(Qay, s) − wB(a)(ȳ, s)""""L2ρ = o(

1
s2

) as s → +∞. (2.11)

Note that an alternative application of Proposition 2.1 with W1 = Wa and W2 = wB(a) yields either (2.5) or
(2.6). However, the case (2.5) is excluded by (2.11). Hence, (2.8) follows. Since we showed in Corollary 2.2
that a Ü→ B(a) is continuous, the same holds for a Ü→ A(a).

As for (2.9), it is a direct consequence of the following lemma which allows us to carry estimate (2.8)
from compact sets |y| ≤ K to sets |y| ≤ K√s.
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Lemma 2.6 (Extension of the Convergence from Compact Sets to Sets |y| ≤ K√s). Assume that Z satisfies

∂sZ ≤ ∆Z −
1
2 y ⋅ ∇Z + Z +

C1
s
Z, 0 ≤ Z(y, s) ≤ C1 for all (y, s) ∈ ℝN × [ ̂s, +∞), (2.12)

for some C1 > 0. Then for all s� ≥ ̂s and s ≥ s� + 1 such that e(s−s�)/2 = √s, we have

sup
|y|≤K√s

Z(y, s) ≤ C(C1, K)es−s
�
‖Z(s�)‖L2ρ .

Proof. This lemma is a corollary of [15, Proposition 2.1] and it is proved in the course of the proof of
[4, Proposition 2.13] (in particular, pp. 1203–1205).

Let us derive (2.9) from Lemma 2.6. If we define G(y, s) = Wa(Qay, s) − wB(a)(ȳ, s), straightforward calcula-
tions based on (1.13) yield

∂sG = ∆G −
1
2 y ⋅ ∇G + G + αG for all (y, s) ∈ ℝN × [− log T, +∞), (2.13)

where
α(y, s) = |Wa|p−1Wa − |wB|p−1wB

Wa − wB
−

p
p − 1 = p|w̃(y, s)|p−1 − p

p − 1 ifWa ̸= wB,

for some w̃(y, s) ∈ (Wa(Qay, s), wB(a)(ȳ, s)).
From [11, Theorem 1], we know that for s large enough,

‖w̃(s)‖L∞ ≤ κ + C
s
,

which implies

α(y, s) ≤ p(κ + Cs )
p−1

−
p

p − 1 ≤
C1
s
. (2.14)

If Z = |G|, thenwe use Kato’s inequality ∆G ⋅ sgn(G) ≤ ∆(|G|) to derive equation (2.12) from (2.13) and (2.14).
Applying Lemma 2.6 together with estimate (2.8) yields

sup
|y|≤K√s

Z(y, s) ≤ Ces−s�e− s�
2 (s�)C0 ≤ Ce−

s
2 s

3
2+C0

for all s� ≥ s1 and s ≥ s� + 1 for some s1 > 0 large such that e(s−s�)/2 = √s. This yields (2.9). Estimate (2.10)
directly follows from (2.9) by the transformation (1.12). This ends the proof of Proposition 2.5.

2.2 Part 2: A Geometric Constraint Linked to the Asymptotic Behaviors

In this subsection, we follow the idea of [20] to introduce local C1,α∗ -charts of the blow-up set, and get a
geometric constraint mechanism on the blow-up set (see Proposition 2.7 below) which is a crucial step in
linking refined asymptotic behaviors of the solution to geometric descriptions of the blow-up set.

Consider a ∈ Sδ and ℓ ∈ {1, . . . , N − 1}. We introduce the local C1,α∗ -chart of the blow-up set at the point
a as follows:

ℝN−ℓ → ℝN , ̃ξ Ü→ (γa,1( ̃ξ ), . . . , γa,ℓ( ̃ξ ), ̃ξ),

where ̃ξ = (ξℓ+1, . . . , ξN) and γa,i ∈ C1,α
∗
((−ϵa , ϵa)N−ℓ) for some α∗ ∈ (0, 12 ) and ϵa > 0. Then the set Sδ is

locally near a defined by

{a +
ℓ

∑
i=1
γa,i( ̃ξ )ηi(a) +

N
∑
j=ℓ+1

ξkτk(a)
!!!!!! |

̃ξ | < ϵa}, (2.15)

where η1(a), . . . , ηℓ(a) and τℓ+1(a), . . . , τN(a) are of norm1 and, respectively, normal and tangent to Sδ at a.
By definition, we have

γa,i(0) = 0 and ∇γa,i(0) = 0 for all i = 1, . . . , ℓ.
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Let Qa be the orthogonal matrix whose columns are ηi(a) and τj(a), namely

ηi(a) = Qaei and τj(a) = Qaej . (2.16)

Define
wa(y, s) = (T − t)

1
p−1 u(x, t), y = QTa(

x − a
√T − t

), s = − log(T − t). (2.17)

Then we see from (1.12) that wa satisfies (1.13) and

wa(y, s) = Wa(Qay, s) for all (y, s) ∈ ℝN × [− log T, +∞). (2.18)

Note from (2.16) that the point (y, s) in the domain of wa becomes the point (x, t) in the domain of u, where

x = a + e−
s
2 Qay = a + e−

s
2 (

ℓ

∑
i=1
yiηi(a) +

N
∑
j=ℓ+1

yjτj(a)), t = T − e−s .

Now, fix a ∈ Sδ and consider an arbitrary b ∈ Sδ. From (2.17), we have

wa(y, s) = wb(Y, s), where Y = QTb(Qay + e
s
2 (a − b)). (2.19)

If we differentiate (2.19) with respect to yk with k ∈ {ℓ + 1, . . . , N}, we get

(T − t)
1
p−1+ 1

2
∂u

∂τk(a)
(x, t) = ∂wa

∂yk
(y, s) =

ℓ

∑
i=1
τk(a) ⋅ ηi(b)

∂wb
∂yi

(Y, s) +
N
∑
j=ℓ+1

τk(a) ⋅ τj(b)
∂wb
∂yj

(Y, s). (2.20)

If we fix b as the projection of x = a + e− s
2 Qay on the blow-up set in the orthogonal direction to the tan-

gent space to the blow-up set at a, then b has the same components on the tangent space spanned by
{τℓ+1(a), . . . , τN(a)} as x. In particular,

b = b(a, y, s) = a +
ℓ

∑
i=1
γa,i(e−

s
2 ỹ)ηi(a) +

N
∑
j=ℓ+1

e−
s
2 yjτj(a), ỹ = (yℓ+1, . . . , yN). (2.21)

The following proposition gives a geometric constraint on the expansion of wa, which is the bridge linking
the refined asymptotic behavior to the refined regularity of the blow-up set.

Proposition 2.7 (A Geometric Constraint on the Expansion of wa). Assume that

γa ∈ C1,α
∗
((−ϵa , ϵa)N−ℓ,ℝℓ) for some α∗ ∈ (0, 12) and ϵa > 0.

Then, there exists s1 ≥ max{− log T, s0} (s0 is introduced in Proposition 2.5) such that for all a ∈ Sδ, |y| ≤ 1,
s ≥ s1 and k = ℓ + 1, . . . , N, it holds that

!!!!!!!
∂wa
∂yk

(y, s) − {
∂wb
∂yk

(ȳ, 0, . . . , 0, s) + κ
2ps

ℓ

∑
i=1

∂γa,i
∂ξk

(e−
s
2 ỹ)yi}

!!!!!!!

≤ C
ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
[|ȳ| log s

s2
+
1
s
e−

α∗s
2 + e−

s
2 sC0] + Ce−

(1+α∗)s
2 sC0 , (2.22)

where ȳ = (y1, . . . , yℓ), ỹ = (yℓ+1, . . . , yN) and b is defined by (2.21).

Proof. Note that the proof of Proposition 2.7was given in [20] onlywhen ℓ = 1. Of course, that proof naturally
extends to the case when ℓ ∈ {2, . . . , N − 1}. Since our paper is relevant only when ℓ ≥ 2 and Proposition 2.7
presents an essential link between the asymptotic behavior of the solution and a geometric constraint of the
blow-up set, we felt we should give the proof of this proposition for the completeness and for the reader’s
convenience. As said earlier, this section just gives the main steps of the proof of Theorem 1.1, and because
the proof is long and technical, we leave it to Section 3.3.
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2.3 Part 3: Refined Regularity of the Blow-Up Set and Conclusion of Theorem 1.1

In this subsection, we give the proof of the C2-regularity of the blow-up set (Theorems 1.1 and 1.3). We pro-
ceed in two steps:
∙ Step 1: We derive from Proposition 2.5 that γa is C1,

1
2−η for all η > 0. Then we apply Proposition 2.7 with

α∗ = α ∈ (0, 12 ) to improve the regularity of γa which reaches C1,1−η for all η > 0.
∙ Step 2: Using the C1,1−η-regularity and the geometric constraint in Proposition 2.7, we refine the asymp-

totic behavior given inProposition2.5,which involves termsof order 1s e
− s
2 . Exploiting this refinedasymp-

totic behavior together with the geometric constraint (2.22), we derive that γa is of class C2, which is the
conclusion of Theorem 1.1. From the information obtained on the C2-regularity, we calculate the second
fundamental form of the blow-up set, which concludes the proof of Theorem 1.3.

Step 1: DerivingC1,1−η-Regularity of the Blow-Up Set. Wefirst derive theC1, 12−η-regularity of the blow-up set
for all η > 0 from Proposition 2.5. Then we apply Proposition 2.7 with α∗ = α ∈ (0, 12 ) to get C

1,1−η-regularity
for all η > 0. In particular, we claim the following:

Proposition 2.8 (C1, 12−η-Regularity for S). Under the hypotheses of Theorem1.1, S is the graph of a vector func-
tion γ ∈ C1,

1
2−η((−δ1, δ1)N−ℓ,ℝℓ) for any η > 0, locally near â. More precisely, there is an h0 > 0 such that for

all | ̃ξ | < δ1 and |h̃| < h0 such that | ̃ξ + h̃| < δ1, one has for all i ∈ {1, . . . , ℓ},

!!!!γi( ̃ξ + h̃) − γi( ̃ξ ) − h̃ ⋅ ∇γi( ̃ξ )!!!! ≤ C|h̃|
3
2 !!!!log |h̃|

!!!!
1
2+

C0
2 . (2.23)

Proof. The proof is mainly based on the derivation of the sharp asymptotic profile given in Proposition 2.5.
In fact, we exploit the estimate (2.10) to find out a geometric constraint on the blow-up set S, which implies
some more regularity on S. Since the argument follows the same lines as in [17, Section 4] for the case ℓ = 1,
and no new ideas are needed for the case ℓ ≥ 2, we will just sketch the proof by underlying the most relevant
aspects in Section 3.2 for the sake of convenience.

The next proposition shows the C1,1−η-regularity of the blow-up set.

Proposition 2.9 (C1,1−η-Regularity for Sδ). There exists ξ0 > 0 such that for each a ∈ Sδ, the local chart defined
in (2.15) satisfies for all k = ℓ + 1, . . . , N and | ̃ξ | < ξ0,

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

( ̃ξ )
!!!!!!!
≤ C| ̃ξ |!!!!log | ̃ξ |!!!!

1+μ for some μ > 0.

Proof. Note that the case ℓ = 1 was already proven in [20, p. 516, Lemma 3.4]. Here we use again the argu-
ment of [20] for the case ℓ ≥ 2. Using the estimate given in Proposition 2.5 and parabolic regularity, we see
that for all k ≥ ℓ + 1 and s ≥ s0 + 1,

sup
a∈Sδ ,|y|<2

!!!!!!!
∂wa
∂yk

(y, s)
!!!!!!!
≤ Ce−

s
2 sμ for some μ > 0.

Consider a ∈ Sδ and y = (ȳ, ỹ), where ȳ = (y1, . . . , yℓ) is such that yi∗ = 1 for some i∗ ∈ {1, . . . , ℓ}, yj = 0
for 1 ≤ j ̸= i∗ ≤ ℓ, and ỹ = (yℓ+1, . . . , yN) is arbitrary in ∂BN−ℓ(0, 1). For s ≥ max{s0 + 1, s1}, we consider
b = b(a, y, s) defined as in (2.21). Since γa is C1,

1
2−η for any η > 0, we use (2.22) with α∗ = α ∈ (0, 12 ) to write

for k ∈ {ℓ + 1, . . . , N},

κ
2ps

!!!!!!!
∂γa,i∗
∂ξk

(e−
s
2 ỹ)

!!!!!!!
≤ C log s

s2
ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
+ Ce−

s
2 sμ .

Since i∗ is arbitrary in {1, . . . , ℓ}, we get

κ
2ps

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
≤ C log s

s2
ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
+ Ce−

s
2 sμ ,
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which gives
ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
≤ Ce−

s
2 s1+μ .

If ̃ξ = e− s
2 ỹ, then | ̃ξ | = e− s

2 and !!!!log | ̃ξ |!!!! =
s
2 since |ỹ| = 1. Therefore,

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
≤ C| ̃ξ |!!!!log | ̃ξ |!!!!

1+μ .

Since ỹ is arbitrary in ∂BN−ℓ(0, 1), ̃ξ = e− s
2 ỹ covers a whole neighborhood of 0, namely B(0, ξ0), where

ξ0 = e− 1
2 max{s0+1,s1}. This concludes the proof of Proposition 2.9.

Step 2: Further Refined Asymptotic Behavior and Deriving C2-Regularity of S. In this part, we shall use the
C1,1−η-regularity of the blow-up set together with the geometric constraint (2.22) in order to refine further the
asymptotic behavior (2.8). In particular, we claim the following:

Proposition 2.10 (Further Refined Asymptotic Behavior (2.8)). There exist s2 > 0, d ∈ (0, 12 ) and continuous
functions a → λβ(a) for all β ∈ ℕN with |β| = 3 and |β̄| = 1, where β̄ = (β1, . . . , βℓ), |β̄| = ∑ℓ

i=1 βi, such that for
all a ∈ Sδ and s ≥ s2,

"""""""
Wa(Qay, s) − wB(a)(ȳ, s) −

e− s
2

s ∑
|β|=3,|β̄|=1

λβ(a)hβ(y)
"""""""L2ρ

≤ Ce−
s
2 sd−

3
2 , (2.24)

where hβ is defined in (3.2).

Proof. The proof of this proposition is based on ideas of [20] where the case ℓ = 1was treated. As in [20], the
geometric constraint given in Proposition 2.7 plays an important role in deriving (2.24). Since the proof is
long and technical, we leave it to Section 3.4.

Let us derive Theorem 1.1 from Propositions 2.10 and 2.7. In particular, Theorem 1.1 is a direct consequence
of the following result.

Proposition 2.11. For all a ∈ Sδ, we have for all i ∈ {1, . . . , ℓ}, j, k ∈ {ℓ + 1, . . . , N},

Λ(i)
j,k(a) =

∂2γa,i
∂ξjξk

(0) = 2p
κ
(1 + δj,k)λei+ej+ek (a),

where a → λβ(a) is introduced in Proposition 2.10, ei is the i-th vector of canonical base of ℝN , and δi,k is the
Kronecker symbol.

Proof. From (2.18), (2.24) and the fact that estimate (2.24) also holds inW2,∞(|y| < 2) by parabolic regular-
ity, we derive for all k ≥ ℓ + 1 and s ≥ s2 + 1,

sup
a∈Sδ ,|y|<2

!!!!!!!
∂wa
∂yk

(y, s) − e
− s
2

s ∑
|β|=3,|β̄|=1

λβ(a)
∂hβ
∂yk

(y)
!!!!!!!
≤ Ce−

s
2 sd−

3
2 , (2.25)

for some d ∈ (0, 12 ). Note that if |β̄| = 1, then there is a unique index i∗ ∈ {1, . . . , ℓ} such that βi∗ = 1 and
βm = 0 for m ∈ {1, . . . , ℓ}, m ̸= i∗. Note also from the definition of hβ (see (3.2) below) that

∂hβ
∂yk

(y) = βkhβk−1(yk)
N
∏

j=1,j ̸=k
hβj (yj),

and that h0 = 1. Therefore, (2.25) yields

!!!!!!!
∂wa
∂yk

(y, s) − e
− s
2

s

ℓ

∑
i=1

∑
|β|=3,βi=1

λβ(a)h1(yi)βkhβk−1(yk) ∏
j=ℓa+1,j ̸=k

hβj (yj)
!!!!!!!
≤ Ce−

s
2 sd−

3
2 . (2.26)
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Take i∗ ∈ {1, . . . , ℓ} arbitrarily and y = ei∗ + ϵej where ϵ = ±1 and j ≥ ℓ + 1. Since hm(0) = 0 if m is odd, and
βi∗ = 1 if |β| = 3, we have either β = ei∗ + ej∗ + ek∗ or β = ei∗ + 2ej∗ for some j∗, k∗ ∈ {ℓ + 1, . . . , N}. Using
(2.26) yields

!!!!!!!
∂wa
∂yk

(ei∗ + ϵej , s) − ϵ e− s
2

s
(1 + δk,j)λei∗+ek+ej (a)!!!!!!! ≤ Ce− s

2 sd−
3
2 . (2.27)

Similarly, we have
!!!!!!!
∂wa
∂yk

(ei∗ , s)!!!!!!! ≤ Ce− s
2 sd−

3
2 . (2.28)

Now using Proposition 2.7, we write for y = ei∗ + ϵej and s ≥ max{s2 + 1, s1},

!!!!!!!
∂wa
∂yk

(ei∗ + ϵej , s) − ∂wa∂yk
(ei∗ , s) − κ

2ps
∂γa,i∗
∂ξk

(e−
s
2 ϵej)

!!!!!!!

≤ C log s
s2

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ϵej)

!!!!!!!
+ Ce−

(1+α∗)s
2 sC0 + Ce−ssC0+1.

Using this estimate together with (2.27) and (2.28), we obtain

!!!!!!!
ϵe−

s
2 (1 + δk,j)λei∗+ek+ej (a) − κ

2p
∂γa,i∗
∂ξk

(e−
s
2 ϵej)

!!!!!!!
≤ C log s

s

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ϵej)

!!!!!!!
+ Ce−

s
2 sd−

1
2 . (2.29)

From Proposition 2.10, we see that

‖Wa(Qay, s) − wB(a)(ȳ, s)‖L2ρ ≤ Cs
−1e−

s
2 for all s ≥ s2.

Using this estimate and noticing that the same proof of Proposition 2.9 holds with μ = −1, we derive

ℓ

∑
i=1

!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ϵej)

!!!!!!!
≤ Ce−

s
2 .

Putting this estimate into (2.29) and noticing that ∂γa,i∗∂ξk (0) = 0, we find that

∂2γa,i∗
∂ξk∂ξj

(0) = lim
s→+∞

∂γa,i∗
∂ξk (e− s

2 ϵej)

ϵe− s
2

=
2p
κ
(1 + δk,j)λei∗+ek+ej (a). (2.30)

Since i∗ is taken arbitrarily belonging to {1, . . . , ℓ}, identity (2.30) holds for all i∗ ∈ {1, . . . , ℓ}. This concludes
the proof of Proposition 2.11.

Proof of Theorem 1.1. From the definition of the local chart (2.15), we have γa,i(0) = ∇γa,i(0) = 0 for all
i ∈ {1, . . . , ℓ}. Hence, we deduce from (2.30) the expression of the second fundamental form of the blow-up
set at the point a along the unitary basic vector QTaei: for all k, j ∈ {ℓ + 1, . . . , N},

Λ(i)
k,j(a) =

∂2γa,i
∂ξk∂ξj

(0) = 2p
κ
(1 + δk,j)λei+ek+ej (a). (2.31)

In addition, since a → λβ(a) is continuous, we conclude that the blow-up set is of class C2. This completes
the proof of Theorem 1.1.

Proof of Theorem 1.3. The estimate (1.23) directly follows from Propositions 2.10 and 2.11. Indeed, the sum
in estimate (2.24) can be indexed as

{β ∈ ℕN | |β| = 3, |β̄| = 1} = {ei + ej + ek | 1 ≤ i ≤ ℓ, ℓ + 1 ≤ j, k ≤ N},
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where ek is the k-th canonical basis vector ofℝN . By (2.31) and the definition of hβ (see (3.2) below), wewrite

∑
|β|=3,|β̄|=1

λβ(a)hβ(y) =
ℓ

∑
i=1

N
∑

j,k=ℓ+1
λei+ej+ekhei+ej+ek (y)

=
κ
2p

ℓ

∑
i=1
yi

N
∑

j,k=ℓ+1

Λ(i)
j,k(a)

1 + δj,k
(yjyk − 2δj,k),

which yields (1.23).
As for (1.24), we note from (2.24) that for all |β| = 3 with |β̄| = 1, one has

!!!!!!!
ga,β(s) −

e− s
2

s
λβ(s)

!!!!!!!
≤ Ce−

s
2 sd−

3
2

(recall that ga(y, s) = Wa(Qay, s) − wB(a)(ȳ, s)). Hence, we write from (2.31),

Λ(i)
j,k(a) =

2p
κ
(1 + δj,k)λei+ej+ek (a)

=
2p
κ
(1 + δj,k) lim

s→+∞
se

s
2 ga,ei+ej+ek (s)

=
2p
κ
(1 + δj,k) lim

s→+∞
se

s
2 ∫

ℝN

ga(y, s)
hei+ej+ek (y)
‖hei+ej+ek‖2L2ρ

ρ(y)dy.

Using again the definition of hβ (see (3.2) below), we see that

hei+ej+ek = yi(yjyk − δj,k) and ‖hei+ej+ek‖2L2ρ = 8(1 + δj,k).

Recall that wA does not depend on yj for j ≥ ℓ + 1. Hence, for all j, k ≥ ℓ + 1,

Λ(i)
j,k(a) =

p
4κ lim

s→+∞
se

s
2 ∫

ℝN

Wa(Qay, s)yi(yjyk − 2δj,k)ρ(y)dy,

which is (1.24). This concludes the proof of Theorem 1.3.

3 Proof of Propositions 2.1, 2.7, 2.8 and 2.10

3.1 Classification of the Difference of Two Solutions of (1.13) Having the Same
Asymptotic Behavior

In this subsection, we give the proof of Proposition 2.1. The formulation is the same as given in [4] for the
difference of two solutions with the radial profile (ℓ = N). Therefore, we sketch the proof and emphasize only
the novelties. Note also that the case ℓ = 1 was treated in [17].

Let us define
g(y, s) = W1(y, s) −W2(y, s),

where Wi, i = 1, 2 are the solutions of equation (1.13) and behave like (2.3). We see from (1.13) and (2.3)
that for all (y, s) ∈ ℝN × [− log T, +∞),

∂sg = L g + αg, ‖g(s)‖L2ρ ≤ C
log s
s2

, (3.1)

where
L = ∆ −

1
2 y ⋅ ∇ + 1
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and
α(y, s) = |W1|p−1W1 − |W2|p−1W2

W1 −W2
−

p
p − 1 ifW1 ̸= W2,

in particular,

α(y, s) = p|W0(y, s)|p−1 −
p

p − 1 for someW0(y, s) ∈ (W1(y, s),W2(y, s)).

The operator L is self-adjoint onD(L ) ⊂ L2ρ(ℝN). Its spectrum consists of eigenvalues

spec(L ) = {λn = 1 −
n
2 | n ∈ ℕ}.

The eigenfunctions corresponding to 1 − n
2 are

hβ(y) = hβ1 (y1) ⋅ ⋅ ⋅ hβN (yN), β1 + ⋅ ⋅ ⋅ + βN = |β| = n, (3.2)

where

hm(ξ) =
[m/2]
∑
i=0

m!
i!(m − 2i)! (−1)

iξm−2i , m ∈ ℕ

satisfy
∫
ℝ

hm(ξ)hn(ξ)ρ(ξ)dξ = 2mm!δm,n .

The component of g on hβ is given by

gβ(s) = ∫

ℝN

kβ(y)g(y, s)ρ(y)dy, where kβ(y) =
hβ(y)
‖hβ‖2L2ρ

.

If we denote by Pn the orthogonal projector of L2ρ over the eigenspace of L corresponding to the eigenvalue
1 − n

2 , then
Png(y, s) = ∑

|β|=n
gβ(s)hβ(y).

Since the eigenfunctions of L span the whole space L2ρ, we can write

g(y, s) = ∑
n∈N

Png(y, s) = ∑
β∈ℕN

gβ(s)hβ(y) = ∑
β∈ℕN ,|β|≤k

gβ(s)hβ(y) + Rk+1g(y, s),

where Rkg = ∑n≥k Png. We also denote

I(s)2 = ‖g(s)‖2L2ρ = ∑
n∈ℕ

l2n(s) = ∑
n≤k

l2n(s) + r2k+1(s),

where
ln(s) = ‖Png(s)‖L2ρ , rk(s) = ‖Rkg(s)‖L2ρ . (3.3)

As for α, we have the following estimates.

Lemma 3.1 (Estimates on α). For all y ∈ ℝN and s ≥ − log T, we have

α(y, s) ≤ C
s
, |α(y, s)| ≤ C

s
(1 + |y|2),

!!!!!!!
α(y, s) + 1

4s

ℓ

∑
i=1
h2(yi)

!!!!!!!
≤
C
s 3
2
(1 + |y|3).

Proof. The proof follows the same lines as the proof of [4, Lemma 2.5] where the case ℓ = N was treated.

In the following lemma, we project equation (3.1) on the different modes to get estimates for I(s), ln(s) and
rn(s). More precisely, we claim the following:
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Lemma 3.2 (Evolution of I(s), ln(s) and rn(s)). There exist s3 ≥ − log T and s∗ > 0 such that for all s ≥ s3,
n ∈ ℕ and β ∈ ℕN , one has

!!!!!!!
l�n(s) + (

n
2 − 1)ln(s)

!!!!!!!
≤ C(n) I(s)

s
, (3.4)

I�(s) ≤ (1 −
n + 1
2 +

C0
s )I(s) +

n
∑
k=0

1
2 (n + 1 − k)lk(s), (3.5)

!!!!!!!
g�β(s) + (−1 +

|β|
2 +

1
s

ℓ

∑
i=1
βi)gβ(s)

!!!!!!!
≤ C(β)( 1

s 3
2
I(s) + 1

s (
l|β|−2(s) + l|β|+2)), (3.6)

r�n(s) ≤ (1 −
n
2)rn(s) +

C
s
I(s − s∗). (3.7)

Proof. See [4, Lemma 2.7] for (3.4) and (3.5). See [17, p. 545, Appendix B.1] for a calculation similar to (3.6).
For (3.7), see [20, p. 523], where the calculation is mainly based on the following regularizing property of
equation (3.1) by Herrero and Velázquez [9] (control of the L4ρ-norm by the L2ρ-norm up to some delay in time,
see [9, Lemma 2.3]):

(∫ g4(y, s)ρdy)
1
4
≤ C(∫ g2(y, s − s∗)ρdy)

1
2

for some s∗ > 0.

This ends the proof of Lemma 3.2.

In the next step, we use Lemma 3.2 to show that either the null mode or a negative mode ofL will dominate
as s → +∞. In particular, we have the following:

Proposition 3.3 (Dominance of a Mode and Its Description).
(i) Either ln(s) = O( I(s)s ) for all n ∈ ℕ, and there exist σn, Cn > 0 and C�n > 0 such that

I(s) ≤ CnsC
�
nexp((1 −

n
2)s) for all s ≥ σn;

(ii) or there is n0 ≥ 2 such that

I(s) ∼ ln0 (s) and ln(s) = O(
I(s)
s ) as s → +∞ for all n ̸= n0. (3.8)

Moreover,
∙ if n0 = 2, namely I(s) ∼ l2(s), then for all |β| = 2,

{{{{{{
{{{{{{
{

|gβ(s)| ≤ C
log s
s 5
2

if
ℓ

∑
i=1
βi ̸= 2,

!!!!!!!
gβ(s) −

cβ
s2

!!!!!!!
≤ C log s

s 5
2

if
ℓ

∑
i=1
βi = 2,

(3.9)

∙ if n0 = 3, namely I(s) ∼ l3(s), then

I(s) ≤ C0e−
s
2 sC0 for some C0 > 0. (3.10)

Proof. See [4, Proposition 2.6] for the existence of a dominating component, where the proof relies on (3.4)
and (3.5). If case (ii) occurs with n0 = 2, by (3.6) we write for all β ∈ ℕN with |β| = 2,

!!!!!!!
g�β(s) +

gβ
s

ℓ

∑
i=1
βi
!!!!!!!
≤ C(β)( I(s)

s 3
2

+
l0(s) + l4(s)

s ) ≤ C(β) I(s)
s 3
2

≤ C(β) log s
s 7
2
,

where we used (3.8) and (3.1) from which we have l0(s) + l4(s) = O( I(s)s ) and I(s) = O( log ss2 ). Since ∑ℓ
i=1 βi is

only equal to 0, 1 or 2 if |β| = 2, estimate (3.9) follows after integration. Estimate (3.10) immediately follows
from (3.4). This ends the proof of Proposition 3.3.
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Let us now derive Proposition 2.1 from Proposition 3.3. Indeed, we see from Proposition 3.3 that if case (i)
occurs, we already have exponential decay for I(s). If case (ii) occurs with n0 ≥ 3, by (3.4) we write

!!!!!!!
l�n0 (s) + (

n0
2 − 1)ln0

!!!!!!!
≤
C
s
ln0 .

Since ln0 ̸= 0 in a neighborhood of infinity, this gives

ln0 (s) ≤ C0sC0e(1−
n0
2 )s ≤ C0sC0e−

s
2 ,

which yields (2.4). If case (ii) occurs with n0 = 2, by definition of P2, we derive from (3.9) that there is a
symmetric, real (ℓ × ℓ)-matrixB such that

P2g(y, s) =
1
s2

(
1
2 ȳ

TBȳ − tr(B)) + o( 1
s2

),

which is (2.3). This concludes the proof of Proposition 2.1.

3.2 C1, 12−η-Regularity of the Blow-Up Set
We give the proof of Proposition 2.8 in this section. The proof uses the argument given in [17] treated for the
case ℓ = 1. Here we shall exploit the refined estimate (2.10) to obtain a geometric constraint on the blow-up
set. Without loss of generality, we assume â = 0 and Qâ = Id. Under the hypotheses of Proposition 2.8, we
know that γ ∈ C1((−δ1, δ1)N−ℓ,ℝℓ) with ℓ ∈ {1, . . . , N − 1}. If we introduce

Γ(x̃) = (γ1(x̃), . . . , γℓ(x̃), x̃), x̃ = (xℓ+1, . . . , xN),

then
Im Γ ∩ B(0, 2δ) = graph(γ) ∩ B(0, 2δ) = Sδ .

Consider x̃ and h̃ inℝN−ℓ such that x̃ aswell as x̃ + h̃ are in B(0, δ1) and Γ(x̃) aswell as Γ(x̃ + h̃) are in Sδ. For all
t ∈ [T − e−s0−1, T) such that |Γ(x̃) − Γ(x̃ + h̃)| ≤ √(T − t)|log(T − t)|, we use (2.10) with x = a = Γ(x̃ + h̃), then
with x = Γ(x̃ + h̃) and a = Γ(x̃) to find that

{
{
{

!!!!(T − t)
1
p−1 u(Γ(x̃ + h̃), t) − wB(Γ(x̃+h̃))(0, s)

!!!! ≤ Ce
− s
2 s

3
2+C0 ,

!!!!(T − t)
1
p−1 u(Γ(x̃ + h̃), t) − wB(Γ(x̃))(ȳΓ(x̃),Γ(x̃+h̃),s , s)

!!!! ≤ Ce
− s
2 s

3
2+C0 ,

(3.11)

where ȳΓ(x̃),Γ(x̃+h̃),s is defined as

ȳa1 ,a2 ,s = e
s
2 ((a1 − a2) ⋅ Qa1e1, . . . , (a1 − a2) ⋅ Qa1eℓ). (3.12)

Since Γ is C1, we have
|Γ(x̃ + h̃) − Γ(x̃)| ≤ C|h̃|.

Let us fix t = ̃t(x̃, h̃) such that
|Γ(x̃ + h̃) − Γ(x̃)| = √(T − ̃t)|log(T − ̃t)|, (3.13)

and take h̃ ∈ BN−ℓ(0, h1(s0)) for some h1(s0) > 0. Then we have ̃t ≥ T − e−s0−1. Hence, if ̃s = − log(T − ̃t), by
(3.11) we have

!!!!wB(Γ(x̃+h̃))(0, ̃s) − wB(Γ(x̃))(ȳΓ(x̃),Γ(x̃+h̃), ̃s , ̃s)!!!! ≤ Ce
− ̃s
2 ̃s

3
2+C0 . (3.14)

Similarly, by changing the roles of x̃ and x̃ + h̃, we get

!!!!wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(ȳΓ(x̃+h̃),Γ(x̃), ̃s , ̃s)!!!! ≤ Ce
− ̃s
2 ̃s

3
2+C0 , (3.15)

where ȳΓ(x̃+h̃),Γ(x̃), ̃s is defined as in (3.12).
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From a Taylor expansion for wB(ȳ, ̃s) near ȳ = 0, we write

wB(ȳ, ̃s) = wB(0, ̃s) + ȳ ⋅ ∇wB(0, ̃s) + 1
2 ȳ

T∇2wB(0, ̃s)ȳ + O(|ȳ|3|∇3wB(z, ̃s)|), (3.16)

for some z between 0 and ȳ.
Since (2.2) and (2.7) also hold in Ckloc by parabolic regularity, we deduce that

|∇wB(0, ̃s)| = O(
log ̃s

̃s2
), ∇2wB(0, ̃s) = −

κ
4p ̃s

Iℓ×ℓ + O(
log ̃s

̃s2
).

From [11, Theorem 1], we know that
‖∇3wB( ̃s)‖L∞ ≤

C3
̃s 3
2
.

Substituting all these above estimates into (3.16) yields

wB(ȳ, ̃s) ≤ wB(0, ̃s) − κ
8p ̃s

|ȳ|2 + C3|ȳ|
3

6 ̃s 3
2

+
C log ̃s

̃s2
.

Therefore, we have
wB(ȳ, ̃s) ≤ wB(0, ̃s) − κ

16p ̃s
|ȳ|2 for all |ȳ| ≤ 3κ

8C3p
√ ̃s. (3.17)

We claim from (3.14), (3.15) and (3.17) the following:
!!!!wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(0, ̃s)!!!! ≤ Ce

− ̃s
2 ̃s

3
2+C0 . (3.18)

Indeed, if wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(0, ̃s) ≥ 0, then by (3.17) and (3.15) we have

0 ≤ wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(0, ̃s)

≤ wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(ȳΓ(x̃+h̃),Γ(x̃), ̃s , ̃s)

≤ Ce−
̃s
2 ̃s

3
2+C0 .

If wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃+h̃))(0, ̃s) ≤ 0, then we do as above and use (3.14) instead of (3.15) to obtain (3.18).
From (3.18), (3.14) and (3.17), we get

κ
16p ̃s

|ȳΓ(x̃),Γ(x̃+h̃), ̃s|
2 ≤ wB(Γ(x̃))(0, ̃s) − wB(Γ(x̃))(ȳΓ(x̃),Γ(x̃+h̃), ̃s , ̃s) ≤ Ce−

̃s
2 ̃s

3
2+C0 .

Hence, we obtain
|ȳΓ(x̃),Γ(x̃+h̃), ̃s|

2 ≤ Ce−
̃s
2 ̃s

5
2+C0 . (3.19)

From the definition (3.12), we have

|ȳΓ(x̃),Γ(x̃+h̃), ̃s| = e
̃s
2 d(Γ(x̃), πΓ(x̃+h̃)), (3.20)

where we recall πΓ(x̃+h̃) is the tangent plan of S at Γ(x̃ + h̃). On the other hand, we claim that

d(Γ(x̃), TΓ(x̃+h̃)) ≥
|γi(x̃ + h̃) − γi(x̃) − h̃ ⋅ ∇γi(x̃)|

√1 + |∇γi(x̃)|2
, (3.21)

where Si is the surface of equation xi = γi(x̃), and Ti,Γ(x̃+h̃) is the tangent plan of Si at Γ(x̃ + h̃). Indeed, we
note that

d(Γ(x̃), Ti,Γ(x̃+h̃)) =
|γi(x̃ + h̃) − γi(x̃) − h̃ ⋅ ∇γi(x̃)|

√1 + |∇γi(x̃)|2
,

and Im Γ ⊂ Si, hence, (3.21) follows from d(Γ(x̃), TΓ(x̃+h̃)) ≥ d(Γ(x̃), Ti,Γ(x̃+h̃)).
Combining (3.19), (3.20), (3.21) together with the relation ̃s = − log(T − ̃t) yields

|γi(x̃ + h̃) − γi(x̃) − h̃ ⋅ ∇γi(x̃)|2 ≤ C(T − ̃t)
3
2 |log(T − ̃t)|

5
2+C0 .
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If we denote A = |Γ(x̃ + h̃) − Γ(x̃)| ≤ C|h̃|, then by relation (3.13) we have

|log(T − ̃t)| ∼ 2|log A|, T − ̃t ∼ A2

2|log A| as A → 0.

Hence,
|γi(x̃ + h̃) − γi(x̃) − h̃ ⋅ ∇γi(x̃)|2 ≤ CA3|log A|1+C0 ≤ C|h̃|3!!!!log |h̃|

!!!!
1+C0 ,

which yields (2.23). This concludes the proof of Proposition 2.8.

3.3 A Geometric Constraint Linking the Blow-Up Behavior of the Solution to the
Regularity of the Blow-Up Set

This section is devoted to the proof of Proposition2.7. The proof follows ideas given in [20]. By the hypothesis,
we have γa ∈ C1,α

∗
((−ϵa , ϵa)N−ℓ,ℝℓ) for some α∗ ∈ (0, 12 ) and ϵa > 0, and γa,i(0) = ∇γa,i(0) = 0. Thus, for all

| ̃ξ | < ϵa,
|γa,i( ̃ξ )| ≤ C| ̃ξ |1+α∗ and |∇γa,i( ̃ξ )| ≤ C| ̃ξ |α∗ . (3.22)

In what follows, k ∈ {ℓ + 1, . . . , N} is fixed, and we use indexes i andm for the range 1, . . . , ℓ, index j for the
range ℓ + 1, . . . , N.

We now use (3.22) to approximate all the terms appearing in (2.20).
(a) Term τk(a) ⋅ ηi(b). From the local coordinates (2.21), we have

ηi(b) =
1

√1 + |∇γa,i(e−
s
2 ỹ)|2

(ηi(a) −
N
∑
j=ℓ+1

∂γa,i
∂ξj

(e−
s
2 ỹ)τj(a)).

Using (3.22) and the fact that τk(a) ⋅ ηi(a) = 0 and τk(a) ⋅ τj(a) = δk,j, we obtain
!!!!!!!
τk(a) ⋅ ηi(b) +

∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
=
!!!!!!!
(1 −

1

√1 + |∇γa,i(e−
s
2 ỹ)|2

)
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!

≤
!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
|∇γa,i(e−

s
2 ỹ)|2

≤
!!!!!!!
∂γa,i
∂ξk

(e−
s
2 ỹ)

!!!!!!!
e−α∗s . (3.23)

(b) Term τk(a) ⋅ τj(b). From (2.21) and (3.22), we have

|b − a| ≤
!!!!!!!

ℓ

∑
i=1
γa,i(e−

s
2 ỹ)

!!!!!!!
+ e−

s
2 |ỹ| ≤ Ce−

s
2 .

Since ηi and τj are Cα
∗ , it holds that

|ηi(a) − ηi(b)| + |τj(a) − τj(b)| ≤ C|a − b|α∗ ≤ Ce−α∗ s
2 .

It follows that
{
{
{

|ηi(a) ⋅ ηm(b) − δi,m| + |τk(a) ⋅ τj(b) − δk,j| ≤ Ce−α
∗ s
2 ,

|ηi(a) ⋅ τj(b)| + |ηi(b) ⋅ τj(a)| ≤ Ce−α
∗ s
2 .

(3.24)

(c) The point Y(a, y, s). Using (2.16), (2.19) and (2.21), we write

Ym = Y ⋅ em = (Qay + e
s
2 (a − b)) ⋅ Qbem

= {
ℓ

∑
i=1
yiηi(a) +

N
∑
j=ℓ+1

yjτj(a) − e
s
2 [

ℓ

∑
i=1
γa,i(e−

s
2 ỹ)ηi(a) +

N
∑
j=ℓ+1

e−
s
2 yjτj(a)]} ⋅ Qbem

= {
ℓ

∑
i=1

[yi − e
s
2 γa,i(e−

s
2 ỹ)]ηi(a)} ⋅ Qbem .
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From (2.16), we write for m ∈ {1, . . . , ℓ},

Ym − ym = {(ym − e
s
2 γa,m(e−

s
2 ỹ))ηm(a) ⋅ ηm(b) − ymηm(a) ⋅ ηm(a)}

+
ℓ

∑
i=1,i ̸=m

(yi − e
s
2 γa,i(e−

s
2 ỹ))ηi(a) ⋅ ηm(b),

and for n ∈ {ℓ + 1, . . . , N},

Yn =
ℓ

∑
i=1

(yi − e
s
2 γa,i(e−

s
2 ỹ))ηi(a) ⋅ τn(b).

Using (3.24) yields
|Ym − ym| ≤ Ce−α

∗ s
2 and |Yk| ≤ Ce−α

∗ s
2 .

Hence, if we write
Ȳ = (Y1, . . . , Yℓ) and Ỹ = (Yℓ+1, . . . , YN),

then
|ȳ − Ȳ| ≤ Ce−α∗ s

2 and |Ỹ| ≤ Ce−α∗ s
2 . (3.25)

(d) Term ∂wb
∂yi (Y, s). From Proposition 2.5 and the parabolic regularity, we have that

sup
s≥s� """"wb(y, s) − wB(b)(ȳ, s)""""W2,∞

loc (|ȳ|<2) ≤ Ce
− s
2 sC0 . (3.26)

This implies

!!!!!!!
∂wb
∂yi

(Y, s) −
∂wB(b)
∂yi

(ȳ, s)
!!!!!!!
+

N
∑

m=ℓ+1

!!!!!!!
∂wb
∂ym

(Y, s)
!!!!!!!
+ sup

|z|<2,(m,n) ̸=(i,i),i≥ℓ+1

!!!!!!!
∂2wb
∂ym∂yn

(z, s)
!!!!!!!
≤ Ce−

s
2 sC0 . (3.27)

Similarly, from (2.1) and (2.18),

sup
s≥− log T

"""""""
wa(y, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""W2,∞

loc (|ȳ|<2)
≤ C log s

s2
. (3.28)

From (3.26) and (3.28), we deduce that

sup
s≥s��

"""""""
wB(a)(y, s) − {κ + κ

2ps(ℓ −
|ȳ|2

2 )}
"""""""W2,∞

loc (|ȳ|<2)
≤ C log s

s2
. (3.29)

Using (3.29), we have for |z| ≤ 2,

!!!!!!!
∂2wB(b)

∂y2i
(z, s) + κ

2ps
!!!!!!!
≤ C log s

s2
and

!!!!!!!
∂2wB(b)
∂yi∂ym

(z, s)
!!!!!!!
≤ C log s

s2
, m ̸= i.

Note that ∂wB(b)/∂yi(0, s) = 0. We then take the Taylor expansion of ∂wB(b)/∂yi(ȳ, s) near ȳ = 0 up to the
first order to get

!!!!!!!
∂wB(b)
∂yi

(ȳ, s) + Yi
κ

2ps
!!!!!!!
≤ C|ȳ| log s

s2
.

Using (3.27) and (3.25) yields
!!!!!!!
∂wb
∂yi

(Y, s) + yi
κ

2ps
!!!!!!!
≤ Ce−

s
2 sC0 + C|ȳ| log s

s2
+
C
s
e−α∗ s

2 . (3.30)

(e) Term ∂wb
∂yj (Y, s). We just use (3.27) and (3.25) to get

!!!!!!!
∂wb
∂yj

(Y, s) − ∂wb
∂yj

(ȳ, 0, . . . , 0, s)
!!!!!!!
≤ Ce−(1+α∗) s2 . (3.31)

Estimate (2.22) then follows by substituting (3.31), (3.30), (3.27), (3.23) and (3.24) into (2.20). This
concludes the proof of Proposition 2.7.
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3.4 Further Refined Asymptotic Behavior

Weprove Proposition 2.10 in this subsection.We first refine estimate (2.8) and find the following terms in the
expansion which is of order e− s

2 . Using the geometric constraint, we show that all terms of order e− s
2 must be

identically zero,whichgives abetter estimate for ‖Wa(Qay, s) − wB(a)(ȳ, s)‖L2ρ .We then repeat theprocess and
use again Proposition 2.7 in order to get the term of order 1

s e
− s
2 and conclude the proof of Proposition 2.10.

Let us define
ga(y, s) = Wa(Qay, s) − wB(a)(ȳ, s) (3.32)

and
Ia(s)2 = ‖ga(s)‖2L2ρ , la,n(s) = ‖Pnga(s)‖L2ρ , ra,k(s) =

"""""""
∑
n≥k

Pnga(s)
"""""""L2ρ
.

From (2.8), we have
Ia(s) = O(e−

s
2 sμ) for some μ > 0. (3.33)

Note that Lemma 3.2 also holds withW1 = Wa andW2 = wB. We claim the following:

Lemma 3.4. Assume that Ia(s) = O(e− s
2 sμ0 ) for some μ0 ∈ ℝ. There exists s4 > 0 such that for all s ≥ s4,

2
∑
n=0

la,n(s) + ra,4(s) ≤ Ce−
s
2 sμ0−1 (3.34)

and !!!!!!!
d
ds (

ga,β(s)e
s
2 s|β̄|)

!!!!!!!
≤ Cs|β̄|+μ0−

3
2 for all β ∈ ℕN , |β| = 3, (3.35)

where β̄ = (β1, . . . , βℓ), |β̄| = ∑ℓ
i=1 βi.

Proof. By (3.4) and (3.7), we can write for all s ≥ s3,
!!!!!!!
d
ds (

la,n(s)e(n/2−1)s)
!!!!!!!
≤ Ce(n/2−

3
2 )ssμ0−1, n = 0, 1, 2,

and
!!!!!!!
d
ds (

ra,4(s)es)
!!!!!!!
≤ Ce

s
2 sμ0−1.

Estimate (3.34) then follows after integration of the above inequalities. As for (3.35), we just use (3.6) and
(3.34) (note that la,5 ≤ ra,4 by definition (3.3)).

Using (3.33) and applying Lemma 3.4 a finite number of steps, we obtain the following:

Lemma 3.5. There exist s5 > 0 and continuous functions a → λβ(a) for all β ∈ ℕN with |β| = 3 and |β̄| =
∑ℓ
i=1 βi = 0 such that for all a ∈ Sδ and s ≥ s5,

"""""""
ga(y, s) − e−

s
2 ∑
|β|=3,|β̄|=0

λβ(a)hβ(y)
"""""""L2ρ

≤ Ce−
s
2 sd−

1
2 ,

for some d ∈ (0, 12 ), where hβ is defined by (3.2).

Proof. We first show that there is s5 > 0 such that

Ia(s) ≤ Ce−
s
2 sd for some d ∈ (0, 12 ) for all s ≥ s5. (3.36)

From (3.33), if μ ∈ (0, 12 ), we are done. If μ ≥ 1
2 , we apply Lemma 3.4 with μ0 = μ to get

2
∑
n=0

la,n(s) + ra,4(s) ≤ Ce−
s
2 sμ−1

and
|ga,β(s)| ≤ Ce−

s
2 sμ−

1
2 for all |β| = 3.
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Hence,
Ia(s) ≤ Ce−

s
2 sμ−

1
2 .

Estimate (3.36) then follows by repeating this process a finite number of steps.
Now using (3.36) and Lemma 3.4 with μ0 = d, we distinguish the following two cases:

∙ If |β| = 3 and |β̄| ≥ 1, we integrate (3.35) on [s, +∞) to derive

|ga,β(s)| ≤ Ce−
s
2 sd−

1
2 for all |β| = 3, |β̄| ≥ 1.

∙ If |β| = 3 and |β̄| = 0, by integrating (3.35) on [s5, s], we deduce that there exist continuous functions
a → λβ(a) such that

|ga,β(s) − λβ(a)e−
s
2 | ≤ Ce−

s
2 sd−

1
2 for all |β| = 3, |β̄| = 0.

This concludes the proof of Lemma 3.5.

Now we shall use the geometric constraint on the asymptotic behavior of the solution given in Proposition
2.7 to show that all the coefficients λβ(a) with |β| = 3 and β̄ = 0 in Lemma 3.5 have to be identically zero. In
particular, we claim the following:

Lemma 3.6. There exists s6 > 0 such that for all s ≥ s6,

‖ga(s)‖L2ρ ≤ Ce
− s
2 sd−

1
2 for some d ∈ (0, 12 ) and all a ∈ Sδ .

Proof. Consider a ∈ Sδ. We aim at proving that

λβ(a) = 0 for all β ∈ ℕN , |β| = 3, |β̄| = 0,

where λβ(a) is introduced in Lemma 3.5 and |β̄| = ∑ℓ
i=1 βi.

From (2.18), (3.32) and the fact that the estimate given in Lemma 3.5 also holds in W2,∞(|y| < 2) by
parabolic regularity, we write for all k ≥ ℓ + 1 and s ≥ s5 + 1,

sup
a∈Sδ ,|y|<2

!!!!!!!
∂wa
∂yk

(y, s) − e−
s
2 ∑
|β|=3,β̄=0

λβ(a)
∂hβ
∂yk

(y)
!!!!!!!
≤ Ce−

s
2 sd−

1
2 . (3.37)

Take y = (ȳ, ỹ), where ȳ = (y1, . . . , yℓ) = (0, . . . , 0) and ỹ ∈ BN−ℓ(0, 1). Then we use Proposition 2.9 and
(2.22) to obtain

!!!!!!!
∂wa
∂yk

(y, s) − ∂wb
∂yk

(0, s)
!!!!!!!
≤ Ce−(1+α∗) s2 sC0 + Ce−ssC0+1, (3.38)

for some α∗ ∈ (0, 12 ).
From (3.37) and (3.38), we get

!!!!!!!
∑

|β|=3,|β̄|=0
λβ(a)

∂hβ
∂yk

(y) − ∑
|β|=3,|β̄|=0

λβ(b)
∂hβ
∂yk

(0)
!!!!!!!
≤ Csd−

1
2 . (3.39)

From (2.21) and Proposition 2.9, we see that b → a as s → +∞. Since a → λβ(a) is continuous, d ∈ (0, 12 ),
hβ1 (0) = ⋅ ⋅ ⋅ = hβℓ (0) = h0(0) = 1 from definition (3.2), and

∂hβ
∂yk

(y) = βkhβk−1(yk)
N
∏

j=1,j ̸=k
hβj (yj),

we derive, by passing to the limit in (3.39),

∑
|β|=3,|β̄|=0

λβ(a)βkhβk−1(yk)
N
∏

j=ℓ+1,j ̸=k
hβj (yj) = ∑

|β|=3,|β̄|=0
λβ(a)βkhβk−1(0)

N
∏

j=ℓ+1,j ̸=k
hβj (0).

By the orthogonality of the polynomials hi, this yields

βkλβ(a) = 0 for all k ≥ ℓ + 1 and |β| = 3 with |β̄| = 0.

Take β arbitrary with |β| = 3 and |β̄| = 0, then there exists k ≥ ℓ + 1 such that βk ≥ 1, which implies that
λβ(a) = 0. This ends the proof of Lemma 3.6.
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Proof of Proposition 2.10. From Lemmas 3.6 and 3.4, we see that for all s ≥ s7 = max{s4, s5, s6},

2
∑
n=0

la,n(s) + ra,4(s) ≤ Cs−
s
2 sd−

3
2

and
!!!!!!!
d
ds (

ga,β(s)s
s
2 s|β̄|)

!!!!!!!
≤ Ce|β̄|+d−2 for all |β| = 3, (3.40)

for some d ∈ (0, 12 ). Integrating (3.40) between s and +∞ if |β̄| = 0 and between s7 and s if |β̄| ≥ 1, we get

|ga,β(s)| ≤ Ce−
s
2 sd−1 for all |β| = 3.

Hence,
Ia(s) = ‖ga(s)‖L2ρ ≤ Ce

− s
2 sd−1 for all s ≥ s7.

With this new estimate, we use again Lemma 3.4 with μ0 = d − 1 to show that there exists s8 > 0 such that
for all s ≥ s8,

2
∑
n=0

la,n(s) + ra,4(s) ≤ Ce−
s
2 sd−2

and
!!!!!!!
d
ds (

ga,β(s)e
s
2 s|β̄|)

!!!!!!!
≤ Cs|β̄|+d−

5
2 for all |β| = 3.

This new inequality implies that for all |β| = 3 and s ≥ s8,
∙ if |β̄| = 0 or |β̄| ≥ 2, then |ga,β(s)| ≤ Ce−

s
2 sd− 3

2 ,
∙ if |β̄| = 1, then we obtain the existence of continuous functions a → λβ(a) such that

!!!!!!!
ga,β(s) −

e− s
2

s
λβ(a)

!!!!!!!
≤ Ce−

s
2 sd−

3
2 .

This concludes the proof of Proposition 2.10.
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